Nanomaterial-Enabled Neural Stimulation
نویسندگان
چکیده
Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed.
منابع مشابه
Nanomaterial-enabled stretchable conductors: strategies, materials and devices.
Stretchable electronics are attracting intensive attention due to their promising applications in many areas where electronic devices undergo large deformation and/or form intimate contact with curvilinear surfaces. On the other hand, a plethora of nanomaterials with outstanding properties have emerged over the past decades. The understanding of nanoscale phenomena, materials, and devices has p...
متن کاملHybrid upconversion nanomaterials for optogenetic neuronal control.
Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic method...
متن کاملThe study of the effect of temperature and pulse duration during infrared neural stimulation
This article has no abstract.
متن کاملHistomorphological Evaluation of Transcutaneous Electrical Neural Stimulation in Healing of Experimentally Induced Partial Hip Joint Cartilage Defect in Rabbit
Objective- To determine the effect of the transcutaneous electrical neural stimulation on healing of hip joint cartilage defect in rabbit.Design- Experimental in vivo study.Animals- 12 adult New Zealand rabbits were used.Procedures- Under effective the right femoral head was subluxated and the maximum accessible cartilage was denuded up to subchondral bone using dental bit in each rabbit. Then ...
متن کاملAsymmetric Rectangular Waveform in Stimulation with High Frequency Alternating Current Reduces the Threshold for Neural Conduction Block
Introduction Abnormal neural impulses in the nervous system may lead to various diseases and disabilities. High frequency alternating currents (HFAC) has been used to block the propagation of such impulses and improve the symptoms or disabilities. The technique is safe, reversible, and relatively selective, and its reliability, the optimum stimulation parameters, and elimination of the onset re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016